
window = 10  # rolling window size

rolling_mean_original = ts.rolling(window).mean()
rolling_mean_diff1 = diff1.rolling(window).mean()
rolling_mean_diff2 = diff2.rolling(window).mean()

plt.figure(figsize=(10,6))
plt.plot(ts, label="Original Series (Quadratic Trend)")
plt.plot(rolling_mean_original, label="Rolling Mean", linestyle="--")
plt.legend()
plt.title("Original Series (Non-Stationary)")
plt.show()

plt.figure(figsize=(10,6))
plt.plot(diff1, label="First Difference (d=1)")
plt.plot(rolling_mean_diff1, label="Rolling Mean", linestyle="--")
plt.legend()
plt.title("First Difference (d=1) - Trend Still Visible")
plt.show()

plt.figure(figsize=(10,6))
plt.plot(diff2, label="Second Difference (d=2)")
plt.plot(rolling_mean_diff2, label="Rolling Mean", linestyle="--")
plt.legend()
plt.title("Second Difference (d=2) - Stationary Around Mean 0")
plt.show()

n = 400  
phi_values = [0.2, 0.7, -0.7]  
window = 20

fig, axes = plt.subplots(len(phi_values), 1, figsize=(12, 9))

for i, phi in enumerate(phi_values):
    series = simulate_ar([phi], n=n)
    rolling_mean = pd.Series(series).rolling(window=window).mean()
    
    axes[i].plot(series, alpha=0.6, label=f"AR(1) Series (φ={phi})")
    axes[i].plot(rolling_mean, linestyle="--", label="Rolling Mean 
(Trend Highlight)")
    axes[i].axhline(0, color="black", linewidth=1, linestyle=":")
    axes[i].legend()
    axes[i].set_title(f"AR(1) Process with φ={phi}")

plt.tight_layout()
plt.show()

ARIMA
July 31, 2025 12:10 PM

   Notes Page 1    



from statsmodels.graphics.tsaplots import plot_acf

series_ar = simulate_ar([0.7], n=300)
series_ma = simulate_ma([0.7], n=300)

fig, axes = plt.subplots(2, 2, figsize=(12, 8))

axes[0,0].plot(series_ar, color="blue", alpha=0.7)
axes[0,0].set_title("AR(1) Series (φ=0.7) - Long Memory")

axes[1,0].plot(series_ma, color="orange", alpha=0.7)
axes[1,0].set_title("MA(1) Series (θ=0.7) - Short Memory")

plot_acf(series_ar, lags=20, ax=axes[0,1])
axes[0,1].set_title("AR(1) ACF - Slow Decay")

plot_acf(series_ma, lags=20, ax=axes[1,1])
axes[1,1].set_title("MA(1) ACF - Cutoff After Lag 1")

plt.tight_layout()
plt.show()

   Notes Page 2    



np.random.seed(42)
n = 300
phi = 0.6    # AR(1) coefficient
theta = 0.5  # MA(1) coefficient
c = 0
e = np.random.normal(0, 1, n+1)  # white noise
y = np.zeros(n+1)
for t in range(1, n+1):
    y[t] = y[t-1] + c + phi * (y[t-1] - y[t-2] if t>1 else 0) + e[t] + theta * e[t-1]

series_arima = pd.Series(y[1:])

diff_series = series_arima.diff().dropna()

from statsmodels.tsa.arima.model import ARIMA
model = ARIMA(series_arima, order=(1,1,1)).fit()
fitted = model.fittedvalues
residuals = model.resid

ar_component = phi * diff_series.shift(1)
fig, axes = plt.subplots(4, 1, figsize=(12, 12))

axes[0].plot(series_arima, label="ARIMA(1,1,1) Simulated Series")
axes[0].set_title("ARIMA(1,1,1) - Combined Series")
axes[0].legend()

axes[1].plot(diff_series, alpha=0.4, label="Differenced Series (Base for AR)")
axes[1].plot(ar_component, color="red", label=f"AR Component (φ= {phi})", 
linewidth=2)
axes[1].axhline(0, color="black", linestyle=":")
axes[1].set_title("Autoregressive (AR) - Influence of Lagged Values")
axes[1].legend()

axes[2].plot(diff_series, color="purple", alpha=0.7, label="Differenced Series (I 
Component)")
axes[2].axhline(0, color="black", linestyle=":")
axes[2].set_title("Integrated (I) - Differencing Removes Trend")
axes[2].legend()

axes[3].plot(residuals, color="orange", label="Residuals (MA Influence)")
axes[3].axhline(0, color="black", linestyle=":")
axes[3].set_title("Moving Average (MA) - Past Errors Influence")
axes[3].legend()

plt.tight_layout()
plt.show()

   Notes Page 3    


