

Convolution Neural Networks

- Good like data
 - e.g. 2D images.
 - 1D time series
- Instead of fully connected layers (to all neurons)
 - Focus on small regions \rightarrow Features
 - Using filters (sliding over the data)
- Helps focus on immediate neighbors instead of noise from all the features
- Same filter across all input so kind of same weight
- Creating ^{automatic} features (like maybe eyes, nose etc. in an image)

CNN

e.g. A sample input $\rightarrow I =$

10	11	3	8
2	16	12	19
7	1	18	11
13	4	3	14

Each value corresponds to a pixel (in case of an image)
 Value corresponds to a pixel (in case of an image)
 $I = H \times W \times C$

$$I = H \times W \times C$$

0

Usually we do a bit of preprocessing

- Normalize the matrix - So values b/w 0 & 1 - So weights are not too funky & we don't run into problems learning
- Add a padding - Adding empty rows/columns to make sure the output doesn't shrink too much
 - Usually we add it, if we want our 'features' down the line to be of specific size
 - Some networks add padding in every layer to preserve resolution

1.1

Convolution

For simplicity we will walk through our sample without normalization or padding for now

What's happening

$$I_{H \times W \times C} \xrightarrow{\text{Convolution Layer with } K_{(f_w \times f_h \times C)} \text{ filters}} S_{H_{out} \times W_{out} \times C}$$

Mathematically

$$S_{(i,j)} = \sum_{m=0}^{f_h-1} \sum_{n=0}^{f_w-1} \sum_{c=0}^{C-1} I(i \cdot s + m, j \cdot s + n, c) \cdot K(m, n, c)$$

Output of convolution layer
 element on i^{th} row & j^{th} column
 Nested loops for each position in filter (every row, col, channel)
 Input Matrix $H \times W \times C$
 Stride (sliding window)
 Filters (f_w, f_h, C)
 (m, n, c)
 under row, col, channel

input of convolution layer on i^{th} row & j^{th} column

Input Matrix $H \times W \times C$ (size: (f_h, f_w, C))
 $\{(i, j, k)\}$ under row, col, channel

Inside the layer

Let $K = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 $2 \times 2 \times 1$
 $f_h = f_w = C$

$S=1$
Stride (Sliding window)
1 means window moves by 1 column

$p=0$
No padding (Downsampling)

How it works

I	
10	11
2	15
7	1
13	4

I	
10	11
2	15
7	1
13	4

$p=0$

9 times

$$H_{out} = \frac{H - f_h + 2p}{s} + 1 = \frac{4-2+1}{1} = 3$$

$$W_{out} = \frac{W - f_w + 2p}{s} + 1 = \frac{4-2+1}{1} = 3$$

$$S(0,0) = \begin{bmatrix} 10 & 11 \\ 2 & 15 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = 10 - 15 \Rightarrow -5$$

$$= \begin{bmatrix} I(0,0) & I(0,1) \\ I(1,0) & I(1,1) \end{bmatrix} \begin{bmatrix} K(0,0) & K(0,1) \\ K(1,0) & K(1,1) \end{bmatrix}$$

$$S(0,1) = \begin{bmatrix} 11 & 3 \\ 15 & 12 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = 11 - 12 \Rightarrow -1$$

$$= \begin{bmatrix} I(0,0) & I(0,2) \\ I(1,0) & I(1,2) \end{bmatrix} \begin{bmatrix} K(0,0) & K(0,1) \\ K(1,0) & K(1,1) \end{bmatrix}$$

$$S(i,j) = \sum_m \sum_n I(i+m, j+n) K(m, n)$$

Overall

$$I_{H \times W \times C} \xrightarrow{\text{Convolution Layer with } K_{(f_h, f_w \times C)} \text{ filters}} S_{H_{out} \times W_{out} \times C}$$

10	11	3	8
2	15	12	19
7	1	18	11
13	4	3	14

$$\xrightarrow{\hspace{1cm}} \begin{bmatrix} -5 & -1 & -16 \\ 1 & -3 & 1 \\ 3 & -2 & 4 \end{bmatrix}$$

$$S(3,3,1)$$

$$K(2,2,1), p=0, S=1$$

1.2 Activation

This is ~~pretty~~ standard (happens in other NN)

Here we applied on the convolution output (S) above

There are various functions that can be used

Here we'll use ReLU, one of the popular activation function for sparsity

$$\text{ReLU } f(x) = \max(0, x)$$

$$\text{Sigmoid } f(x) = \frac{1}{1 + e^{-x}}$$

$$\text{tanh } f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

we will use ReLU, one of the popular activation function for sparsity

$$\text{ReLU}(x) = \begin{cases} x & x \geq 0 \\ 0 & x < 0 \end{cases}$$

$A(i,j) = \text{ReLU}(S(i,j))$

The output element in i th row & j th column

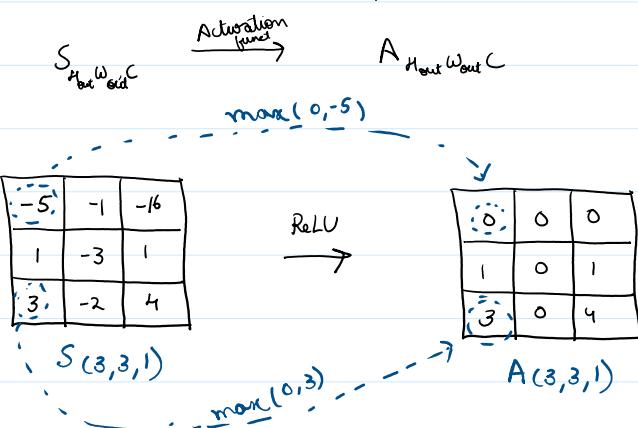
Only keeps positive values

Helps with gradient optimization downstream

softmax $f(x) = \frac{e^x}{\sum e^x}$

LeakyReLU $f(x) = \begin{cases} x & x \geq 0 \\ \alpha x & x < 0 \end{cases}$

Swish $f(x) = \frac{x}{1+e^{-x}}$



②

Pooling

Point is to reduce the size further (to control overfitting & improve computation)

Coalescing different features - a sliding window over the output of convolution activation

e.g. Max pooling - max of the window (keeps only the strongest feature)

Avg. pooling - avg. of the window (combines features into a smaller more smoother matrix)

In this case, we'll use max pooling

$P(i,j) = \max_{0 \leq m < k} A(i, i+m, j, j+m)$

Output element in i th row & j th column

Pooling window

Activation output

stride

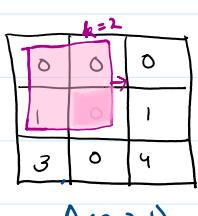
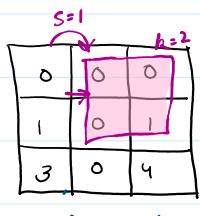
e.g.

$k=2$

Pooling window

$s=1$
stride

Usually no padding



4 times

$$H_{\text{out}} = \frac{H - k_h + 2p}{s} + 1 = \frac{3 - 2 + 0}{1} + 1 = 2$$

$$W_{\text{out}} = \frac{W - k_w + 2p}{s} + 1 = \frac{3 - 2 + 0}{1} + 1 = 2$$

3	0	4
A(3,3,1)		

1	0	4
A(3,3,1)		

$$H_{out} = \frac{H - k_h + 2p}{s} + 1 = \frac{5 - 2 + 0}{1} + 1 = 2$$

$$W_{out} = \frac{W - k_w + 2p}{s} + 1 = \frac{3 - 2 + 0}{1} + 1 = 2$$

P_{2x2}

$$P(0,0) = \max \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}_{2 \times 2} = 1$$

$$P(0,1) = \max \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}_{2 \times 2} = 1$$

$$P(0,0) = \max \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix}$$

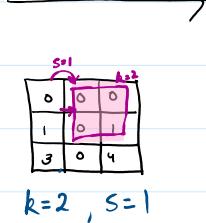
$$P(0,1) = \max \begin{pmatrix} A_{01} & A_{02} \\ A_{11} & A_{12} \end{pmatrix}$$

$$P(c, i, j) = \max_{0 \leq m, n \leq k} A(i+m, j+n)$$

$$A(H_{out}, W_{out}, C) \xrightarrow{\text{Pooling layer}} P(H_{out}, W_{out}, C)$$

0	0	0
1	0	1
3	0	4

A(3,3,1)



1	1
3	4

P(2,2)

③

Flatten

Just as it sounds

Takes this condensed feature matrix (after convolution, activation, pooling)
& puts into 1d vector

$$P(H, W, C) \xrightarrow{\text{Flattening layer}} F(1, H \cdot W \cdot C)$$

1	1
3	4

$$\rightarrow [1, 1, 3, 4]$$

④

Fully Connected

Again a standard layer (last layer) followed by an activation function for final output

U

+ fully connected

Again a standard layer (last layer) followed by an activation function for final output
e.g. a softmax function

$$y = \omega x + b$$

Learned params

$$\Rightarrow \text{Final Output} = \sigma(\omega x + b)$$

$$y_j = \sigma\left(\sum_i^N \omega_{ij} x_i + b_j\right)$$

In our case

$$\text{Final output} = \sigma\left(\omega \begin{bmatrix} 1 \\ 1 \\ 3 \\ 4 \end{bmatrix} + b\right)$$

If our fully connected layer has lets say 2 neurons,
e.g. for a binary classification & ω will be 4×2 ;
here output of each neuron
describes the probab. of that class

$$y = \sigma\left(\left[\begin{array}{cc} \omega_{01} & \omega_{11} \\ \vdots & \vdots \\ \omega_{03} & \omega_{13} \end{array}\right] \begin{bmatrix} 1 \\ 1 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} b_1 & b_2 \end{bmatrix}^T\right)$$

$$= \sigma\left(\begin{bmatrix} \omega_1 x_1 + b_1 \\ \omega_2 x_2 + b_2 \end{bmatrix}\right) = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

Neuron 1
Neuron 2